Annotating, Tracking, and Protecting Cryptographic
Secrets with CryptoMPK

Xuancheng Jin!, Xuangan Xiao', Songlin Jia', Wang Gao!, Dawu Gu', Hang Zhang?
Siqi Ma3, Zhiyun Qian?, and Juanru Li!
! Shanghai Jiao Tong University 2 UC Riverside ® The University of Queensland

Abstract—Protecting confidential data against memory disclo-
sure attacks is crucial to many critical applications, especially
those involve cryptographic operations. However, it is neither
easy to identify involved cryptographic confidential data in
a program nor to implement a fine-grained and yet efficient
protection. Existing defensive techniques face many shortcomings
such as coarse-grained protection or exorbitant overhead. As a
result, real world crypto applications seldom applied this kind
of protection in practice.

To make the protection of cryptographic confidential data
practical, we design and implement CRYPTOMPK, a source code
analysis and transformation system to implement a domain-based
memory isolation. CRYPTOMPK first automatically tracks and
labels all sensitive memory buffers and operations in source
code with a context-sensitive, crypto-aware information flow
analysis. Then it partitions the source code into crypto and
non-crypto domains with a context-dependent privilege switch
instrumentation. By further utilizing Intel Memory Protection
Keys (MPK), CRYPTOMPK generates executables with effi-
cient domain switching, protecting them against typical memory
disclosure vulnerabilities such as arbitrary memory read. In
particular, by using CRYPTOMPK, a large number of interme-
diate memory buffers that have been previously ignored before
are well protected, and thus the security risks are reduced
significantly. We leveraged CRYPTOMPK to protect prevalent
applications such as Apache and Nginx with widely used crypto
libraries (e.g., OpenSSL, LibSodium). CRYPTOMPK only needs
several minutes to analyze each of these complex cryptographic
programs and incurs at most 9.53% performance overhead for
the protected programs.

I. INTRODUCTION

Applications rely on the confidentiality of crypto keys to
guarantee the security of executed crypto operations (e.g.,
HTTPS encryption). Hence, memory disclosure attacks, which
could leak the secret crypto key, severely threat the security
of those applications. Allowing every instruction of a process
to access crypto data is dangerous and unnecessary. In re-
sponse, various solutions have been proposed in recent years
to enhance the protection of crypto-related confidential data in
process memory.

A natural strategy is to introduce in-process memory isola-
tion to a program to add special access control for confidential
memory buffers. However, doing this correctly and securely
can be tricky for crypto software since it is difficult to
identify all relevant data that need isolation manually. One of
the basic principles of modern cryptography, the Kerckhoffs’
Principle [1], states that everything about the cryptosystem,

Corresponding author: Juanru Li (mail@lijuanru.com)

except the key, is public knowledge. This principle, however,
misleads many memory protection solutions: Most existing
approaches only protect the main crypto keys only, which is
insufficient to defend against memory disclosure attacks. For
instance, some approaches (e.g., Safekeeping [2], Copker [3])
keep crypto keys solely inside CPU, without leaking their
plaintext to memory. Unfortunately, most software implemen-
tations of modern ciphers (e.g., AES, RSA) generate and store
intermediate states of the crypto operations in memory as well,
from which the crypto key can be easily derived. Thus the
memory disclosure attacks still work even when the proposed
defenses are deployed.

Beside the crypto key, a wide variety of runtime data
(e.g., the CryptReleaseContext of Windows Crypto API)
also contain confidential information that needs protection
but frequently ignored by most existing defense mechanisms.
However, protecting all crypto confidential data in a program is
a very sophisticated and challenging task, especially for those
real-world complex programs and crypto libraries. It needs
to first identify all memory buffers containing confidential
data (i.e., crypto buffers), and then memory operations al-
lowed to access them (i.e., crypto operations). Most protection
approaches identify crypto buffers and operations manually
(e.g., xMP [4] and libmpk [5]), which is time-consuming
and error-prone even for an expert developer. Some other
works (e.g., DataShield [0], SeCage [7]) leverage program
analysis to automatically locate crypto buffers, however, due
to the unawareness of the intrinsic nature of data propagation
of crypto operations, they have a severe over-tainting issue
(e.g., encrypted ciphertext or decrypted plaintext are also
treated as confidential). By allowing more code to access
those over-tainted data, attack surfaces to disclose secrets
expand significantly. Another problem is how to isolate crypto
and non-crypto operations in a process while minimizing the
performance overhead. Some defenses (e.g., ConfLLVM [&])
adopt an address-base isolation by inserting checks before
every memory access instruction. Although the protection is
fine-grained, for most crypto operations that are CPU and
memory access intensive, this is obviously inefficient and
unacceptable.

Major challenges for generating a crypto secrets protected
program include how to track and label all sensitive data
and operations in the code automatically, how to grant the
permission of an instruction to access sensitive data, and
how to implement and deploy a fine-grained yet efficient

isolation. In this work, we overcome the above challenges
by developing a comprehensive in-process isolation solution
specifically designed to protect sensitive crypto-related secrets.
At a high level, our solution, CRYPTOMPK, relies on a fine-
grained and crypto-aware static taint analysis whose results
inform a subsequent partition of the program into different
protection domains. Specificallyy, CRYPTOMPK is equipped
with three core techniques to address the aforementioned chal-
lenges: 1) CRYPTOMPK automatically determines what data
to protect given a small number of initially labelled tags. In
particular, CRYPTOMPK avoids the over-tainting issue by con-
ducting a crypto-aware ciphertext/plaintext declassification. 2)
CRYPTOMPK adopts a context-sensitive instrumentation to
partition the program in a very precise way. Unlike tradi-
tional access control schemes, the attributes of an instruction
(e.g., whether it needs to be isolated from a certain piece
of sensitive information) can change under different calling
contexts according to our analysis results, enabling a more
accurate and efficient protection. CRYPTOMPK achieves such
a context-sensitivity by generating multiple copies of code
instrumented with context-dependent privilege switches. 3)
CRrRYPTOMPK enforces an efficient domain-based isolation by
using the Memory Protection Keys (MPK) hardware feature of
latest Intel processors. Furthermore, CRYPTOMPK optimizes
the protection granularity to minimize the runtime overhead
while maintaining strong security guarantees.

We evaluated CRYPTOMPK on four server programs
(Apache, Nginx, OpenSMTPD, vsftpd) with five widely used
open source crypto projects (OpenSSL, libsodium, libhydrogen,
ccrypt, glibc-crypt) to examine its effectiveness and efficiency
against real-world crypto scenarios including file encryption,
message protection, SSL/TLS transmission, and password
authentication. The results show that CRYPTOMPK can ac-
curately identify both crypto buffers and crypto operations,
and provide reliable protection for both crypto keys and
other crypto-related sensitive information without affecting
the normal software functionalities, significantly reducing the
exposed confidential data. Regarding the performance, it took
only several minutes for CRYPTOMPK to analyze large and
complex projects offline, and the runtime overhead is at most
9.53% for real-world crypto applications.

In summary, we make the following contributions:

(1) We have designed and implemented the CRYPTOMPK
system to automate the tasks of confidential crypto data/code
identification (including intermediate data derived from the
original) and protected executable generation that incurs neg-
ligible overhead at runtime.

(2) We show that secret information leaking through inter-
mediate buffers (derived from the original secret) is very com-
mon but often ignored for most crypto applications, leading
to broken security guarantees.

(3) We applied CRYPTOMPK to state-of-the-art crypto li-
braries such as OpenSSL [9] and large server programs such as
Apache [10] against any memory disclosure attacks (including

the ones that attempt to read the intermediate buffers) to
demonstrate the effectiveness of our solution.

(4) We developed an empirical guideline to fully utilize

MPK to protect crypto programs in a practical manner. Our
solution could be helpful for the protection of other types of
sensitive data in computational-intensive code.
Availability. We have open sourced our solution at https:/
cryptompk.code-analysis.org, where we placed the tool chain,
instructions of our experiments, and the tested programs
(source code and pre-built binaries).

II. BACKGROUND

A. Problems and Requirements

By transforming memory corruption vulnerabilities into
arbitrary memory read primitives, attackers can disclose sensi-
tive data such as crypto keys. In response, many defenses aim
to protect credential information in memory. The problem is
that for a cryptosystem, if not all sensitive data are protected,
the defense would be ineffective. We use an example here
to illustrate the difficulties in protecting crypto buffers where
secrets are stored in crypto operations. Listing 1 shows the
abstracted AES encryption in ccrypt [11], a cryptographer
developed data encryption tool: In this example, the encrypt
function generates an AES key from a secret passwd. The
key generation procedure propagates the secret information
of passwd to several intermediate buffers such as the rkk
buffer and the keyblock buffer. Consider the situation that
an attacker leverages an arbitrary memory read vulnerability
to scan the memory, not only the passwd buffer but all
those intermediate buffers that store crypto secrets should be
protected. Otherwise, attacker could still exploit the leaked
intermediate buffers to recover secret keys.

1 void encrypt(void *ciphertext, void xplaintext,
char *passwd) {

roundkey rkk;

hashstring(passwd, keyblock) ;

xrijndaelKeySched (keyblock, 256, 256, rkk);

xrijndaelEncrypt(ciphertext, plaintext, rkk);

~No b wN

1
1 Secret Non-secret |

Listing 1: An example of secret propagation in ccrypt

Unfortunately, existing works often fail to comprehensively
protect crypto sensitive information. Many protection ap-
proaches intuitively focus on an original secret but ignore
its propagation. Take the case of using libmpk [5] to protect
OpenSSL against the infamous HeartBleed vulnerability [12]
as an example. The protection only defended SSL/TLS private
keys from potential information leakage by storing the keys in
isolated memory pages. In particular, they only protected data
types that store private keys (e.g., EVP_PKEY) with an isolated
memory region, but do not consider the secret propagation and
let secret information leak to intermediate buffers. Although
they additionally protected functions that need to access the
private key, we will demonstrate in Section V-E that if only the
private key is protected, an attacker could exploit HeartBleed

https://cryptompk.code-analysis.org
https://cryptompk.code-analysis.org

vulnerability to retrieve other intermediate states and still
recover the secret key.

B. Challenges

In short, the major research challenge of this paper is to
determine the minimum part of code that we must grant crypto
buffer access privilege, and block any other accesses (e.g.,
a buffer overread somewhere in the application process). To
accurately label all crypto buffers in a process, and implement
a fine-grained in-process isolation to restrict irrelevant code
from accessing secret information. Existing works face the
following challenges:

How to accurately label crypto memory buffers and related
operations? Crypto data are widely distributed at different
regions of process memory (e.g., stack, heap, global variable).
Existing solutions (e.g., DataShield [6], MemSentry [13],
libmpk [5] and xMP [4]) provide primitives to isolate sensitive
information in specific memory regions. Nonetheless, they do
not answer the question of how to find all those crypto memory
buffers automatically. A straightforward idea (e.g., the solution
adopted by SeCage [7]) to find all crypto buffers is to track the
propagation of initial secret with taint analysis, and restrict the
access against all reference data. This strategy, unfortunately,
suffers from over-protection issue because it propagates taint
tag to plaintext/ciphertext. In the example of Listing 1, if we
define the passwd as the taint source, a standard taint analysis
would also taint the ciphertext at Line 6. In this situation,
the tainting of ciphertext buffer (and its following propagation)
will significantly enlarge the protection scope.

How to isolate crypto data from unauthorized memory
accesses appropriately? The isolating of crypto data in-
herently incurs performance overhead. A very fine-grained
isolation may introduce unacceptable overhead, especially for
CPU-intensive and time-sensitive crypto operations. On the
other hand, a less fine-grained isolation may leave an attack
more opportunities in stealing sensitive data. Therefore, it is
important to choose an appropriate protection granularity to
balance security and performance overhead.

How to implement the isolation without changing the
execution model? Some in-process isolation approaches re-
quire to modify the execution model of the program (e.g.,
moving part of the program to TEE or SGX). This involves
heavy modification of existing code and often introduces
compatibility issue, thus is often infeasible in most cases.

C. Solutions

Analysis-driven Sensitive Data Labeling (Section III-C).
Instead of asking developers to manually label crypto memory
buffers and related operations, we make use of a static code
analysis to help label those information automatically. Par-
ticularly, the adopted static code analysis employs a special
crypto-aware, context-sensitive information flow propagation
strategy to label crypto memory buffers effectively.
Hardware-supported Domain Isolation (Section III-D).
To protect labeled sensitive data, we associate them with
a crypto domain, and fulfill a domain based isolation, which

adds an access permission to qualify the access of crypto se-
cret. When the execution shifts between crypto and non-crypto
domains, instead of using software based heavyweight access
permission granting mechanisms (e.g., hypervisor based), we
utilize Intel Memory Protection Keys (MPK) technology [14]
to implement a processor-featured privilege switching. This
guarantees an efficient protection against crypto applications.
Compiler-assisted Code Transformation (Section III-E).
Instead of partitioning the program into different modules
to implement isolation, we leverage the LLVM infrastructure
to conduct an IR level code transformation (i.e., inserting
privilege switching instructions, re-allocating memory buffers,
adjusting call graph, etc.) while keeping the original execution
model. Without porting the entire crypto application or any
part of it to a secure world (e.g., SGX or Trustzone), a
protected executable still runs in the same environment without
special deployment.

III. CRYPTOMPK
A. Threat Model and Concepts

In this paper we assume attackers are able to launch memory
disclosure attacks due to memory safety issues. The goal
of an attacker is to disclose crypto secrets (e.g., AES key,
RSA private key) from the memory of a process. We only
focus on memory disclosures caused by vulnerabilities such as
HeartBleed [15] and do not consider attacks that compromise
the integrity of execution (e.g., a control flow hijacking caused
by an arbitrary memory write). We do consider the solutions
that protect the integrity of a program [16], [17], [18] can be
complementary to ours. In fact, as we show later in §V-D, we
have partially integrated with one such solution successfully.
Nevertheless, ensuring perfect integrity is still an unsolved
problem which we currently consider to be out-of-scope.

We assume code vulnerabilities exist in an application,
and attackers could remotely exploit such vulnerabilities to
access sensitive data (e.g., crypto keys) in process memory
of the vulnerable application. We do not limit the type of
memory disclosures, which could either be an out-of-bound
read or an arbitrary address read. Nevertheless, this paper
only focuses on memory safety issues and does not consider
information leakage related side-channel attacks, both physical
(e.g., cold boot attack [19]) and logical (e.g., Meltdown [20]
and Spectre [21]) ones.

We use the concepts of crypto buffer and crypto operation
to help analyze the program. We define them as follows:

Definition 1: A crypto buffer is defined as a continuous
memory region (stack, heap, or global) that stores crypto
secrets including master keys and intermediate results of cipher
executions. Note that a buffer stores plaintext or ciphertext is
not considered as a crypto buffer because it does not need to
be protected.

Definition 2: A crypto operation is a memory operation
(either read or write) that access a crypto buffer. We consider
crypto operation to be security-sensitive if it accesses crypto
buffer, and thus should be protected to guarantee the confiden-

Binary security
checks

Points-to analysi:
TIVIIR oints-to analysis

Crypto memory

LLVM
Codegen

Identified
crypto buffer

Tag annotation Taint analysis

Crypto app
source code

o Crypto Buffer Labeling

e Crypto Operation Identification

Enhanced
crypto app

reallocation
Privilege switch

replication

9 Code Transformation

Fig. 1: An overview of CRYPTOMPK workflow

tiality. For example, a memory read instruction that accesses
round key of AES encryption is defined as a crypto operation.

B. Overview of CRYPTOMPK

Our solution, CRYPTOMPK, is a source code analysis and
transformation system that adds fine-grained, context-sensitive
in-process isolation for credential data in crypto applications.
At a high level, CRYPTOMPK labels crypto buffers and crypto
operations in a program automatically, and isolates crypto and
non-crypto operations to reduce the unnecessary accesses of
credential data. As Figure 1 depicts, CRYPTOMPK adopts a
workflow consisting of a pre-analysis phase and three major
phases. In its pre-analysis phase, CRYPTOMPK compiles
program source code to LLVM Intermediate representation
(IR) for the following analyses, and a manual annotation
on source code is required to help CRYPTOMPK understand
specific crypto attributes of the analyzed target. After the pre-
analysis phase, CRYPTOMPK first conducts a crypto buffer
labeling, which relies on static points-to analysis and taint
analysis to label crypto buffers. Next, CRYPTOMPK employs
a crypto operation identification to locate memory accesses
and management operations on crypto buffers. After that,
CRYPTOMPK leverages the results of previous analyses to
fulfill a code transformation. The transformation relocates la-
beled crypto buffers into a protected memory region, replicates
functions to be protected for different contexts, and partitions
the program into a crypto domain and a non-crypto domain,
instrumenting privilege switches on crossing boundaries. Fi-
nally, CRYPTOMPK generates crypto domain isolated binary
code, and utilizes supplementary security checks to inspect
and eliminate potential bugs (e.g., using binary code rewriting
to remove ROP gadgets from the executable).

To identify crypto buffers and operations, CRYPTOMPK
traverses source code of an analyzed program and handles each
instruction using a crypto-aware and context-sensitive taint
propagation. The crypto-aware feature proves that CRYP-
TOMPK would not over-label buffers such as ciphertext, and
the context-sensitive feature guarantees a context-dependent
domain isolation. Based on the identification results, CRYP-
TOMPK modifies LLVM compiler to generate programs with
customized memory management and in-process privilege
switching, which implement a crypto domain based isola-
tion. Only instructions in the crypto domain are allowed to
access crypto buffers, and any sensitive data access from non-
crypto domain will trigger a segmentation fault, which defends
against unauthorized memory accesses such as memory dis-
closure attacks.

C. Automated Crypto Buffer Labeling

CrRYPTOMPK employs an automated crypto buffer labeling
to replace the traditional time-consuming and error-prone
manual annotation. It only requires developers to manually
annotate which buffer stores the initial secrets, and then uses
the initially annotated secret data as its taint source. For
instance, the encryption key and the private key are initial
secrets for symmetric-key ciphers and asymmetric-key ciphers,
respectively. With the annotated initial secrets as taint sources
(with a crypto taint tag), CRYPTOMPK propagates taint tag
to label crypto buffers. It starts with the direct usages of
initial secrets, and traverses the IR instructions as abstractly
interpreting the code. It also leverages a points-to analysis
to accompany the taint analysis, determining the target of
pointers, improving the accuracy of both control-flow and data-
flow construction. After the traversal, CRYPTOMPK generates
an abstract representation for each variable, which contains
taint tags and points-to information.

Unlike normal taint analysis, the taint propagation of CRYP-
TOMPK is crypto-aware. It considers the declassification of
plaintext/ciphertext. That is, unlike common taint analysis that
propagates the crypto tag to the output ciphertext or plaintext
(and thus leads to an over-tainting from the perspective of
cryptography), our crypto-aware taint analysis adds the tag of
crypto key to neither plaintext nor ciphertext. To handle this
case, our analysis requires an extra manual annotation against
plaintext and ciphertext buffers. Then, in the crypto-aware taint
propagation, CRYPTOMPK assigns those annotated buffers
with a special mutually-exclusive (mxor) tag. When the
cipher mixes crypto keys with either plaintext or ciphertext,
the mxor tag will “eliminate” the crypto tag. This helps
CRYPTOMPK fulfil the declassification of plaintext/ciphertext
without specifically defining their propagation rules.

Moreover, CRYPTOMPK uses context-sensitive analysis to
attribute different tags for a same memory buffer under multi-
ple contexts. Taking Listing 2 as an example, the xreadline
function (Line 1-8) is used to read a text line from a file, and
allocate a buffer to store the read content. In this example, the
property of memory buffer allocated by xreadline (Line 2)
depends on the invoking context. If xreadline is invoked by
the readkey function (Line 12), the allocated memory buffer
should be labeled. In other cases (e.g., invoked by the prompt
function at Line 19) the allocated buffer is not sensitive.
In response, CRYPTOMPK generates multiple contexts for
each function according to the execution. In each context, the
abstract representation of involved variables are independent.

Hence CRYPTOMPK could assigns more than one property
for a variable. With such a context-sensitive analysis, CRYP-
TOMPK executes a fine-grained isolation in the following code
transformation phase (detailed in Section III-E2).

D. Crypto Operation Identification

After labeling crypto buffers, in its second phase, CRYP-
TOMPK identifies which parts of the program are allowed to
access those crypto buffers. At the IR level, CRYPTOMPK
defines crypto operations as instructions that access memory
of crypto buffers. Since the first phase analysis has already
obtained the abstract representation of each variable, in a
second traversal against the IR, CRYPTOMPK leverages the
obtained information to identify crypto operations. In particu-
lar, CRYPTOMPK identifies two types of crypto operations.

1) Memory Access: In LLVM IR, load and store are used
to access memory. By checking the accessed address argu-
ments (as crypto or non-crypto buffer) of these instructions,
CRYPTOMPK determines which instructions access crypto
buffers, and attributes them as crypto operations.

2) Memory Management: To further manage crypto buffers,
CRrRYPTOMPK introduces its customized memory manage-
ment to replace the existing ones in a program. Thus it
also needs to identify memory allocation and de-allocation
operations. CRYPTOMPK considers a memory allocation
operation as sensitive if it allocates a crypto buffer, and a
memory de-allocation operation as sensitive if its pointer
argument points to a crypto buffer.

E. Code Transformation

With the labeled crypto buffers and the identified crypto
operations, CRYPTOMPK performs a code transformation at
LLVM IR instruction level to partition the program into a
crypto and a non-crypto domain. It first relocates crypto
buffers to a protected memory region, and then inserts privi-
lege switches between crypto and non-crypto domains.

1) Memory Relocation: CRYPTOMPK relocates different
kinds of crypto buffers into a protected memory region in
a unified way. In detail, CRYPTOMPK replaces both stack
and heap allocations with functions of a customized memory
manager (see details in Section IV-F), Next, CRYPTOMPK
replaces the corresponding de-allocation functions for on-heap
buffers with the customized one for protected buffers, and
inserts extra de-allocation operations in function epilogues
to explicitly release protected buffers that are originally on
stack. For global crypto buffers, CRYPTOMPK re-allocates
them during the initialization of the program and de-allocates
them at the program termination.

Since the labeling of crypto buffer is context-sensitive,
CRYPTOMPK correspondingly executes a context-dependent
memory allocation. In Listing 2, for example, the xreadline
function allocates buf for data read from external files. How-
ever, for different contexts, the allocated memory buffer could
be either a crypto buffer or a non-crypto one. In this example,
only the allocated buffer under the context of readkey (Line
12) is labeled as crypto buffer. Thus CRYPTOMPK does not

1 char *xreadline(int fd) {

2 char xbuf = malloc(MAX_LEN);

3 for (int i = 035 i < MAX_LEN; i++) {

4 int n = read(fd, buf+i, 1);

5 if (n <= || buf[i] == '\n') return buf;
6 }

7 return buf;

8 1

9

10 char *readkey() {

11 [...]

12 char *line = xreadline(fd);

13 [...]

14 return line;

15} Sensitive context
16

17 char *prompt() {

18 [...]

19 char *line = xreadline(fd);

20 [...]

21 return line; Non-sensitive context
22 }

Listing 2: An example of context-dependent memory alloca-
tion

directly replace malloc in Line 2. Instead, it replicates the
xreadline function (one for crypto buffer allocation, and the
other for non-crypto buffer allocation) to implement a fine-
grained management (see Section [V-F).

Instead of invoking time-consuming system calls (e.g.,
mprotect) to implement a memory page level access control,
CRYPTOMPK leverages the Intel MPK instructions (e.g.,
WRPKRU) to fulfill an efficient privilege switch. MPK features
a protection key (PKEY, stored in the 32-bit PKRU register) to
control the access permission of a memory page. By binding a
PKEY to a group of memory pages, access permission of those
pages can be set simultaneously. CRYPTOMPK first relocates
those labeled crypto buffers to a memory region maintained
by its own memory manager, and then binds memory pages
in this protected region with a PKEY.

2) Privilege Switch Instrumenting: To grant or revoke ac-
cess permission against protected buffers at runtime, CRYP-
TOMPK instruments privilege switches between crypto do-
main and non-crypto domain. User process executes a WRPKRU
instruction to updates the PKRU register. CRYPTOMPK thus
adds crypto domain prologue and crypto domain epilogue to
the binary code to fulfill MPK privilege switching as Listing 2
illustrates. Only after an execution of crypto domain prologue,
the later crypto operations are allowed to access protected
memory buffers, and after an execution of crypto domain
epilogue, protected memory buffers restore to an inaccessible
state for non-crypto operations.

For current MPK-enabled processors, up to 16 PKEYs can
be used simultaneously. This allows CRYPTOMPK to support
more than one crypto domain with multiple crypto keys. In
this paper, we only considered the protection with one crypto
domain. Also note that the privilege switch mechanism is
independent to other parts of CRYPTOMPK. Hence, it could
be easily extended to adapt different scenarios. For instance,
in July 2020, Intel have proposed a new PKS [22] feature to
support kernel level memory page access control. Since PKS is

[Non-crypto Operations]

Xor ecx, ecx
xor edx, edx

mov eax, PKRU_CRYPTO_DOMAIN
WRPKRU

Prologue

[Crypto Operations]

Xor ecx, ecx
xor edx, edx

mov eax, PKRU_NORMAL_DOMAIN
WRPKRU

Epilogue

[Non-crypto Operations]
Fig. 2: MPK privilege switching at binary code level

the kernel-version of MPK, CRYPTOMPK could be extended
to protect crypto secrets in kernel easily. Similarly, CRYP-
TOMPK could leverage the shred isolation primitives [23] to
protect ARM executables.

3) Code Replication: CRYPTOMPK generates different
versions of code for different contexts. Algorithm 1 illus-
trates how CRYPTOMPK creates multiple versions of code
(functions) for different contexts. For instance, to protect the
xreadline function in Listing 2, CRYPTOMPK creates a
protected version xreadline_r1 and replaces the invoking
at Line 12, and a non-protected version xreadline_r2 for
the invoking in the prompt function. Since Line 4 and 5 have
been labeled as crypto operations, in xreadline_r1, CRYP-
TOMPK inserts privilege switches before and after them™.
Moreover, by replacing malloc in Line 2 with a customized
memory allocation function, CRYPTOMPK reallocates buf to
the protected memory region in xreadline_ri.

One problem of naive code replication is that it may lead
to a significant code size bloating. As shown in Figure 3a,
xreadline in context of main and readkey is same in
transformation since their semantics in two contexts is iden-
tical. Thus generating two versions of these contexts are
unnecessary. CRYPTOMPK further introduces a function de-
duplication algorithm to avoid generating redundant code
(Algorithm 1). It works by calculating a signature for the
transformation scheme of each context. Contexts of the same
function with the same signature are considered identical and
will share a single piece of code. In this way, code size bloating
introduced by function replication is minimized.

The signature of a context is calculated as follows:

1) Collecting the information of the instructions operating
on crypto buffers. Actual transformations will be done
around these instructions (as defined in §III-D). For each
of them, CRYPTOMPK records its unique identifier (e.g.
address) and its type (e.g. Load).

2) Collecting the signatures of sub-contexts. Two contexts
can share the same code only if their callees are also the
same. Thus for each CallInst, CRYPTOMPK records

*Inserting privilege switches in a loop may lead to performance issues. We
will discuss optimization strategies in Section IV-D

Data: Context set C' in post-traversal order
Result: Output function set F
begin
F {}
forall c € C do
if c is root context then
| cef «cf

else

Sf < getFunctionVariants (c.f)
Sc + signature (¢)
if sc ¢ Sy then
c.f' + copyFunction (c.f)
Sf — Sf U {Sc}
else
| c.f' < variant in Sy with signature s,
end
end
forall I' € c.f' do
if I’ is a call by function pointer then
\ replace I’ with direct function calls
end

end

forall I' € c.f' do

if I’ is a call instruction then
I + mapped instruction for I in c.f
¢’ + subcontext called by I in ¢
I’ .calltarget < ' .f’

end

end
F+« Fu{cf'}

end
return F

end
Algorithm 1: Function Replication

its identifier and type as that in Step 1, plus the name and
signature of the called sub-context.

3) Generating the final signature. Information from pre-
vious steps fully describes the transformation scheme of
the context, thus CRYPTOMPK uses hash_combine () in
boost [24] to calculate its hash as the final signature.

IV. IMPLEMENTATION
A. Static Program Analysis

Static analysis is suitable for checking confidential data
leaks [25]. CRYPTOMPK relies on a context-sensitive points-
to analysis to identify crypto buffers and operations. Since
CRrRYPTOMPK aims to protect crypto operations comprehen-
sively, it seeks to both accurately identify all secrets while only
allowing relevant code to access them. Nevertheless, static
points-to analysis is undecidable for C programs [26] and
thus fundamentally imprecise [27], [28]. Consequently, CRYP-
TOMPK modified the design of Dr. Checker [29] to implement
a sounder analysis. The following design changes were made
for the goal: 1) CRYPTOMPK does not rely on depth-based
heuristics or strong-update features to speed up the analysis,
but keeps all points-to information; 2) CRYPTOMPK adopts a
more sophisticated design of alias objects to support points-
to tracking in nested structures, global variables, and casted
pointers, which are common in crypto applications but are
oversimplified in Dr.Checker; 3) for dangling pointers with

xrealloc
205613...

xalloc
991280...

(a) Original call graph. Three versions of xreadline are
separately invoked by three functions (main, readkey,
prompt). However, the context signatures of xreadline
invoked by main and readkey are identical.

readkey
561299...

traverse_file
167069...

xalloc
991280...

(b) Call graph after applying function de-duplication.
CRYPTOMPK only maintains one copy of xreadline
for two identical context signatures (271101).

Fig. 3: Call graphs before and after function de-duplication

which no object is found associated, CRYPTOMPK would fill
in hollow objects to track their propagation thereafter.

To further ensure efficiency when analyzing complex crypto
code bases, CRYPTOMPK employs two major strategies to
counter the common challenges in a context-aware analysis. To
address context explosion, it prunes off certain contexts where
the corresponding functions are marked as orthogonal to the
sensitive dataflow. To address points-to explosion, we made
our observation that most of the objects are associated with
memory pools (e.g. BN_POOL in OpenSSL [9]), and that they
cannot be distinguished without proper abstraction [30]. Thus,
CRrRYPTOMPK represents the pool with a single object without
compromising the precision. On its finish, the static program
analysis produces a tree of context objects, representing the
call tree of the analyzed program. Each context object contains
information on the taints and points-to relations among local
values and allocated memory objects.

B. Labeling Crypto Buffers

We envision two types of users of CRYPTOMPK: (1) crypto
library developers (the primary type) who are familiar with
the logic of the various crypto functions and any sensitive data
generated within the library, e.g., a private key. (2) application
developers who use crypto libraries and are at least familiar
with the APIs exposed by crypto libraries. This is important
because sometimes crypto secrets can be generated by appli-
cations (host programs), e.g., supplying a password to a crypto
hash function. Therefore, we currently also require application
developers to label such secrets in order for CRYPTOMPK to
track their propagation in the application context as well as
the crypto library context. Later in §V-B and §V-C, we will
report cases where applications-generated secrets do propagate
in the application context (although not very often) and need
to be protected. In both cases, CRYPTOMPK asks developers
to annotate only the initial tags in the source code, which is
shown to be small in both prior work [23] and our evaluation
in §V-B. The propagation of tags is performed completely
automatically by CRYPTOMPK during static analysis.

To annotate the initial tags, developers need to determine
the crypto functions (either provided by the crypto library

or directly implemented as a part of the host program),
and identify the semantics of their input parameters to find
key and plaintext/ciphertext. Next, developers could choose
to directly annotate the key with a crypto tag and the
plaintext/ciphertext with a mxor tag, or shift the annotation
(and thus the protection) to earlier stage program inputs. For
example, in Listing | developers could either label the rkk
parameter of the xrijndaelEncrypt function with a crypto
tag, or instead label the user input passwd string, which helps
generate the AES key. In the future, we plan to automate this
process by having crypto library developers annotate the outer
most tags (e.g., parameters of a crypto API) and backtrack to
the origin of such variables (possibly defined in the application
context). That way, we can shift the burden of annotation to
only the crypto library developers.

1 void do_encrypt() {

2 #pragma tainter cryptotag(passwd)---------- :
3 __cryptotag_fdfef8a65855a52b (passwd) ; «---
4 #pragma tainter mxortag(plaintext)---------;
5 __mxortag_fdfef8a65855a52b(plaintext) ; «-
6 encrypt(ciphertext, plaintext, passwd);

T %

Listing 3: An example of initial tag annotating

CrRYPTOMPK implements a compiler directive in clang
front-end to help annotate the code. Listing 3 gives an example
of the initial annotating: the developer is required to explicitly
add a #pragma annotation (Line 2) to annotate the initial secret
(passwd). With this information, CRYPTOMPK implicitly
inserts a function (Line 3) to help set the taint source (with a
crypto tag). Then our analysis-driven labeling automatically
propagates the initial crypto tag. Moreover, the developer
also needs to annotate an initial mxor tag (Line 4) to indicate
that the plaintext buffer carries a mxor tag).

For those functions without IR code to analyze, CRYP-
TOMPK implements pre-defined rules in taint and points-to
propagation. For instance, CRYPTOMPK handles a memcpy
invoking by checking the taint tag of source object and
the destination object. Modern Processors also adopt extend
instruction set (e.g., AES-NI) to execute crypto algorithms,

and many crypto libraries have already integrated cipher
implementations specifically optimized for those instruction
set extensions. We observed that at LLVM IR level, such an
instruction (e.g., an AES-NI instruction) is implemented as an
LLVM intrinsic function invoking. Therefore, CRYPTOMPK
also handles such instructions as external functions with pre-
defined rules.

C. Identifying Crypto Operations

After the crypto buffer labeling, CRYPTOMPK conducts a
second code traversal to identify crypto operations. For each
memory-related operation, if any of its operands is associated
with a crypto tag, it is considered as a crypto operation.

External functions with pointer arguments, due to the lack
of source code to analyze or modify, are also considered as
memory operations. Ideally, we could conduct binary code
analysis to analyze an external function/library and utilize a
binary code rewriting to generate a protected version. We leave
this as a future work of this research, and currently adopted a
runtime permission granting mechanism for external functions
(see Section IV-G).

D. Privilege Switch Instrumenting

Ideally, CRYPTOMPK inserts privilege switches right before
and after a series of continuous crypto operation instructions to
minimize the attack window. However, if we insert too many
privilege switches, especially in hotspots, the execution will
often suffer from performance issue (our micro-benchmark
shows that the WRPKRU instruction takes about 20 to 30 CPU
cycles, a lot more than an ordinary arithmetic instruction).
To address, CRYPTOMPK trades off performance by pro-
tecting different instrumentation granularity against the code.
For performance critical applications, CRYPTOMPK applies
a function level crypto domain isolation for those hotspot
functions. CRYPTOMPK considers the entire hotspot function
as sensitive, and inserts privilege switches before and after any
instructions that invoke it.

Hotspot functions are identified using a heuristic method. In
general, CRYPTOMPK calculates a () score for each context
(Eq. 4), estimating the ratio of crypto operations within all
memory operations. To resemble the case in real execution,
instructions in loops are additionally weighted (Eq. 2), and
numbers of instructions in sub-contexts are also estimated
(Eq. 3). If the final @, is higher than a pre-defined threshold
(0.25 here), CRYPTOMPK considers the function represented
by ctx as a hotspot function. For recursive functions, due to
their limited usage in crypto programs and the great analysis
difficulty, CRYPTOMPK conservatively protects the entire
recursive invocation.

1 inst is a crypto operation
Qe inst is a callinst, ctx’ is its target ¢))
0 otherwise

Linst = {10

Tinst =

inst is in a loop ?)

inst is not in a loop

Linst * 30 inst is a callinst
Sinst = { Linst inst is a memory operation 3)
0 otherwise
S'Lns * Tins
Qupy = 22 Sinst * Tinst @
Z Sinst

E. Invocation with Function Pointer

After CRYPTOMPK replicates a function, the next step
is to replace all related invocations to guarantee the cor-
rectness of control flow. However, for a function invocation
using function pointer, the control flow is often determined
dynamically and we cannot directly rewrite the invocation.
CRrRYPTOMPK therefore refers to a function pointer expanding
technique used by Glamdring [31]. In our implementation,
CRYPTOMPK first determines all possible candidates of a
function pointer based on the results of points-to analysis, then
replaces the function pointer invocation with expanded direct
calls. In the example of Listing 4, CRYPTOMPK first evaluates
the original invocation with funcptr, finding two possible
invoking targets (func1l and func2). Then CRYPTOMPK adds
two conditional invocations to the two replicated versions
(func_r1l and func_r2). For unexpected targets, they are
invoked in a fallback branch without replication.

funcptr(/*args*/);

if (funcptr == funcl)
funcl_ri1(/*argsx*/);

else if (funcptr == func2)
func2_r2(/*argsx*/);

else
funcptr(/*argsx/);

+ 4+ 4+ 4+ 4+

Listing 4: Function pointer expanding

FE. Crypto Buffer Management

To manage sensitive data in a unified way, CRYPTOMPK
allocates all crypto buffers on a secure heap. It customizes the
Jemalloc [32] allocator to support secure memory manage-
ment. In detail, the customized allocator (namely m_malloc)
binds the allocated memory pages to a specific PKEY. Hence
the access control of crypto buffers can be fulfilled efficiently
by updating the PXRU register. In addition, it maintains a global
table to record the pointer addresses of all crypto buffers,
and replaces all memory de-allocation operations (including
vanilla free) with the unified m_free function. When freeing
a buffer using m_free, it checks the global table to choose the
underlying de-allocator to use, either the customized version
corresponding to m_malloc for crypto buffers, or the standard
free for non-protected buffers.

Allocating all sensitive crypto buffers on our secure heap
may introduce runtime overhead especially for stack mem-
ory operations. An optimization strategy adopted by CRYP-
TOMPK is that, if the length of a buffer is no more than
a primitive scalar type (i.e. 8 bytes), CRYPTOMPK will not
modify its stack memory allocation. Instead, CRYPTOMPK
inserts memory zeroing code in function epilogue to clean

those small buffers immediately after the function execution.
We argue that this kind of buffers seldom store long-term
secret and a memory sanitization rather than secure isolation
is able to defend against memory leak.

G. Runtime Checks

The static code analysis of CRYPTOMPK may not perfectly
identify all crypto operations due to the imprecision of points-
to analysis. If a privileged operation is not correctly identi-
fied, a runtime exception will be triggered and the protected
program will crash. To further prove the robustness, CRYP-
TOMPK does not solely rely on static analysis but leverages
a dynamic analysis to help find those operations. We argue
that developers often possess enough test cases to execute the
program. With these test cases, CRYPTOMPK conducts an
extra runtime test to check the protected program and finds
potential exceptions.

In detail, CRYPTOMPK links the protected program with a
shared library that captures all runtime segment faults caused
by MPK privilege violation. When the linked shared library
captures a PKEY related segment fault during the test, it
records the address of the fault instruction and the accessed
memory buffer, and then temporarily enables access privilege
for this instruction to continue the execution. After the en-
tire execution, all unauthorized memory accesses are sent to
developers for a manual verification. If the manual analysis
confirms a memory access is actually legal (which implies
that the accessed memory buffer should be labeled as crypto
buffer but is missed by our static analysis), CRYPTOMPK will
automatically add a crypto tag for the related buffer and runs
the static analysis again to identify more crypto operations.

In addition, if an unauthorized memory access occurs in
an external library function (without source code and thus
CRYPTOMPK cannot rewrite it), CRYPTOMPK links a spe-
cific segment fault handler to handle the exception, which
restricts the range of code to access sensitive crypto buffers
but suffers from performance slowdown.

V. EVALUATION
A. Experiment Setup

We use two sets of widely used open source projects to
evaluate CRYPTOMPK. The first set contains four popular
crypto libraries including the famous OpenSSL [9] library, the
libcrypt of GNU libc [33], and two modern crypto libraries, lib-
sodium [34] and libhydrogen [35], which aim to provide easy-
to-use, hard-to-misuse functionalities. The second set contains
four widely used Linux web server programs (Nginx [36] and
Apache [10] as HTTP servers, vsftpd [37] as FTP server,
and OpenSMTPD [38] as SMTP server), and ccrypt [11], a
cryptographer developed cross-platform data encryption utility.
Details of the tested libraries and programs are shown in
Table IV in Appendix.

We ran our experiments on a server running Ubuntu 18.04
x64 with two Intel Xeon Gold 5122 Processors (each has eight
logical cores at 3.60 GHz) and 128GB RAM. The current
implementation of CRYPTOMPK runs on top of LLVM 10.0.1.

In our experiment, we first utilized CRYPTOMPK to analyze
all programs, then we execute the analyzed programs with
runtime checks instrumented, finally we generated executables
to evaluate the performance overhead '. In the following, we
report our experimental results.

B. Annotated Tags and Costs

We tested CRYPTOMPK by considering four typical appli-
cation scenarios and the tested cases are detailed in Appendix.
For all test cases, we evaluate the number of manually anno-
tated tags and the approximate amount of effort expended for
each program.

For Apache/Nginx+OpenSSL, we only need to annotated
seven initial crypto tags in OpenSSL including six variables
of the pkey struct that stores private key, and the AES_KEY key
buffer of AES128-GCM API. We additionally annotated two
initial mxor tags to plaintext buffer of RSA-sign and cipher-
text buffer of RSA-verify, and plaintext/ciphertext buffers for
AES128-GCM encryption/decryption, respectively.

For the message protection cases, we annotated three
initial crypto tags to those crypto key parameters of
both the used sign/verify APIs (e.g., hydro_sign_{create,
verify} of libhydrogen) and the used encrypt/decrypt
APIs (e.g., crypto_secretstream_xchacha20poly1305_-
keygen of libsodium, hydro_secretbox_encrypt of libhy-
drogen). After that, we annotated four initial mxor tags to
plaintext/ciphertext parameters of those APIs.

Instead of annotating parameters of crypto functions, in the
case of ccrypt encryption, we annotated four initial crypto
tags to the buffer allocated by the readkey function in host
program. This helps CRYPTOMPK protect crypto secrets in
the entire program. And we annotated three mxor tags to
plaintext buffers, which are read from the input data file.

OpenSMTPD and vsftpd leverage the crypt password hash-
ing function to transform user-provided passwords into a hash
value. We observed the user-provided passwords are not only
used by the crypt function but also other part of the host
program, and thus we annotated the initial crypto tag to
passwd buffers in host programs, and annotated the mxor
tag to the salt parameters of the crypt APIL. An additional
case is that for vsftpd with a parent thread and a child
thread, we annotated two extra initial crypto tags separately
to p_sess->ftp_arg_str of handle_pass_command in its
parent thread, and password_str of process_login_req
in the child thread. Therefore, CRYPTOMPK could not only
analyze the crypt function, but also track and protect the
password propagation in these two host programs.

For each program, it took a single graduate student at most
10 to 15 hours (sometimes spread over multiple days) to
understand where the labels should be assigned. We believe it

To first generate analyzable non-optimized bitcode, we used the compi-
lation option "-00 -Xclang -disable-llvm-passes" to disable unneces-
sary optimizations. Next, the generated bitcode is sent to the analysis passes
of CRYPTOMPK to find sensitive buffers/operations and the output code is
instrumented with our MPK-enabled protection. Finally, we could compile
the bitcode into executables with LLVM backend (with the "-02" option to
optimize the binary code).

TABLE I: Results of buffer labeling, operation identifying, and code protection

Program Tags Total Tainted MemOps Tainted Total Crypto # of Protected Functions
MemOps | (declassification) MemOps Functions | Functions | Total (HF) ‘ AP ‘ oP ‘ uP ‘ RF
cerypt 443 1049 829 838 70 61 22(19) 19 2 1 30
libsodium 1+1 6513 140 151 930 71 26(21) 25 0 1 31
libhydrogen 243 277 57 162 116 62 11(8) 11 0 0 17
Apache+OpenSSL 7+2 92779 0+2149 252842223 | 4879+11082 34+246 0+75(0+66) 75 0 0 177
Nginx+OpenSSL 742 70126 042149 4439+2223 | 1347+11082 244246 0+75(0+66) 75 0 0 177
OpenSMTPD+crypt 2+1 14170 44492 7+566 892+40 22433 4+18(0+16) 22 0 0 19
vsftpd+crypt 3+1 9122 9+492 104566 596+40 42+33 9+18(0+16) 27 0 0 19
Total | 39 | 194,036 | 6,321 | 13,713 | 31,074 | 874 | 296212) | 254 | 2 | 2 | 470

HF: Hotspot functions; AP: accurately protected; OP: over protected; UP: under protected; RF: replicated functions for different contexts

will take developers of the application or crypto libraries even
less time to perform the labeling.

C. Labeling Accuracy

To evaluate whether CRYPTOMPK identifies intermediate
crypto data and relevant operations accurately, we first ex-
ecuted the protected programs (instrumented with runtime
checks) using previously prepared test cases. We found the
executed programs passed all test cases without producing a
feedback, which indicates that CRYPTOMPK properly granted
permissions to all memory accesses of crypto buffers in tested
programs. Then we manually verified the overall labeling
results, which are listed in Table I. We observed that both
the identified crypto memory operations (Tainted MemOps
(declassification)) and functions to fulfill crypto operations
(crypto functions)) are only a small portion of those in the
entire programs. Agadakos et al. [39] also reported a similar
result, which shows 93.82% of code in OpenSSL-libcrypto
could be removed in specific application scenarios. This
demonstrated the in-process isolation among used and non-
used code is expected to reduce attack surfaces significantly.

We found for ccrypt, libsodium, libhydrogen, and crypt
with OpenSMTPD and vsftpd, the ciphertext does not get
further propagated, then the effect of over-tainting is moderate
(Tainted MemOps vs. Tainted MemOps (declassification)).
However, if the ciphertext is further used by other parts of
the application (which is the case for Apache and Nginx), we
saw a substantial increase of sensitive memory operations that
we have to protect, i.e., 2528/4439 extra memory operations.
Actually, Apache and Nginx do not access the crypto secret.
They delegate the management of crypto buffers to crypto
libraries instead. In these cases, the crypto-aware analysis
successfully excludes unnecessary code in host programs from
accessing sensitive crypto secrets. CRYPTOMPK also labeled
four and nine sensitive memory operations in the application
contexts for OpenSMTPD and vsftpd, respectively. We further
confirmed these operations in the host programs access the
passwd buffers and thus should also be protected.

Similar to CRYPTOMPK, DynPTA [40] labeled 12.79%
memory operations as sensitive for Nginx+OpenSSL, while
CRrRYPTOMPK labeled only 3.06% (2149/70126). Our ex-
tended analysis further demonstrated that had CRYP-
TOMPK not adopted the crypto-aware analysis (declassifi-
cation), the labeled memory operations would increase to

10

(4439+2223)/70126=9.5%, which is consistent with the result
of DynPTA.

Among all crypto functions, CRYPTOMPK found 296
(34.3%) of them accessed crypto secrets. As Table I shows,
except four functions in ccrypt and libsodium, CRYPTOMPK
accurately protected functions that operated crypto buffers.
We additionally examine the over protected (OP) and under
protected (UP) functions. We found those functions involve
either an external file reading or a random number generation.
For file reading functions, CRYPTOMPK could not determine
whether the read content is sensitive and thus under protect
them. For random number generation functions, CRYPTOMPK
considers all random numbers used in a crypto application are
sensitive and thus over protect them.

CrYPTOMPK conducted a function level crypto domain
isolation for 212 of the 296 protected functions, and conducted
instruction level isolation for 84 functions. It followed the
strategy mentioned in Section IV-D to choose the appropriate
protection granularity. We further invited two experienced
players who have participated in DEF CON CTF Finals to
help check these functions, and they did not find vulnerable
code in those functions. We also counted the number of
replicated functions in the last column (RF) of Table I to
show the necessity of our context-sensitive analysis. The
number indicates for all protected functions (Total(HF)), how
many different contexts are involved (and thus we need to
generate a new copy of the function). This allows a fine-
grained protection so that we don’t have to choose between
either “always protect” or “always not protect” a function.

D. Security Analysis

To model the capabilities of attackers who can execute
memory corruption based information leak attacks, we adopt
the taxonomy proposed by Szekeres et al. [41]. By utilizing
either an out-of-bounds pointer or a dangling pointer, attackers
could access unauthorized memory regions. In response, we
illustrate how CRYPTOMPK defends against attacks using
such primitives.

o Out-of-bounds Pointers. We assume that an attacker owns
an out-of-bounds pointer in non-crypto domain. He can use
this pointer to either read data before or after a specific
memory region (buffer overflow or underflow respectively),
and the pointer can even be used to read content of a
designated memory address (arbitrary memory read).

For CRYPTOMPK protected programs, the isolation guaran-
tees that the operations in crypto domain do not use the out-
of-bounds pointer in non-crypto domain. Even if the attacker
controls this pointer and could assign it with any memory
address of crypto buffers, he cannot use this pointer to access
the protected buffers because he lacks the corresponding
PKEY permission. Therefore, the attacker could not exploit
such vulnerable pointers to leak sensitive information.

« Dangling Pointers. Similarly, we assume that an attacker
owns a dangling pointer in non-crypto domain. CRYP-
TOMPK guarantees that this pointer should never point to
a crypto buffer because CRYPTOMPK uses two indepen-
dent memory managers for crypto domain and non-crypto
domain, respectively. A dangling pointer only points to
memory buffers of non-crypto domain and thus the attacker
could not leak sensitive data using this vulnerable pointer.

Besides confidentiality protection, we also enhance the
integrity protection by adding the binary code rewriting of
ERIM [42] to eliminate any unintentional occurred WRPKRU or
XRSTOR gadgets, and thus prevent illegal privilege switching
caused by code reuse attacks.

E. Protection Effectiveness

We checked the results of the analysis-driven labeling of
CRYPTOMPK, and found it protected not only crypto keys but
also confidential information propagated from the secret keys.
We manually examined the protected buffers of each crypto
applications to verify whether crucial propagated secrets were
protected (details of CRYPTOMPK labeled code can be down-
loaded at https://cryptompk.code-analysis.org). For all tested
applications, we found propagated secrets were well-protected:
o SSL/TLS. Besides private key and session key, CRYP-

TOMPK additionally protected crypto operations in 75

functions of OpenSSL, e.g., the RSA sign function uses

Montgomery modular multiplication [43] to accelerate expo-

nential operation. In this function, the Montgomery transfor-

mation of private key components p and g produces several

intermediate BIGNUM structs, and those buffers are kept on

the heap for a long time.
« AES. CRYPTOMPK labeled crypto buffers on either stack or
heap for ccrypt. In particular, ccrypt first reads a variable-
length key passphrase from the external input, copies the
initial secret to a password buffer with specific newline
format key2, then hashes it into a 16-byte keyblock. Next,
it executes the standard AES key scheduling to extend the
16-byte keyblock to 15 round keys stored in an AES round
key array rkk (each round key is a 16-byte array). Moreover,
all these buffers are not sanitized after the crypto operations.
As a result, a memory disclosure of either key2, keyblock,
or rkk buffer could give the attacker enough information to
recover the AES key and thus decrypt the ciphertext.
Chacha20-Poly1305. Among the labeled crypto buffers of
libsodium and libhydrogen, we found specific crypto context
structs (e.g., poly1305_state for the chacha20-polyl305
cipher). In further, some functions would propagate the
secret key information from a context struct to a local

11

variable. For instance, in the crypto_secretstream_-
xchacha20poly1305_rekey function of libsodium, the se-
cret information propagates to the new_key_and_inonce
array on the stack. If this array is leaked, the attacker only
needs to guess a nonce offset (corresponding to the size of
ciphertext) by brute-force to decrypt the encrypted data.
Crypt-SHAS12. With the labeled tags, CRYPTOMPK tra-
versed the code and discovered crypto data in 22 and 27
functions in OpenSMTPD and vsftpd, respectively. An in-
teresting observation is that the developer of crypt tried to
clean sensitive buffers after the hashing (e.g., the free_key
buffer). However, this manual sanitization is far from com-
prehensive and there still exist many unprotected buffers. For
instance, the 64-byte correct_words array in the API is an
intermediate buffer that stores input password and will not
be sanitized after the execution. Once the attacker obtains
this information, he can then recover the input password.

To prove the necessity of our protection, we additionally
chose the following five memory disclosure CVEs to test our
protection against different types of memory issues.

e CVE-2011-4576: an uninitialized variable vulnerability in
OpenSSL which leads to a not properly initialized block
cipher padding, and attackers could obtain at most 8191
bytes of uninitialized data on the heap.

CVE-2014-0160: the well-known HeartBleed bug of
OpenSSL that allows remote attackers to obtain sensitive
information from process memory via crafted packets.
CVE-2016-2176: a vulnerability that affects X509_NAME_ -
oneline function in OpenSSL. Attackers could use this
vulnerability to fulfil out-of-bounds reads and obtain at most
1024KB data on the stack.

CVE-2017-9798: a use-after-free vulnerability in Apache.
When attackers send an OPTIONS HTTP request, the server
would read data from a freed chunk and may lead to
potentially sensitive information disclosure.
CVE-2018-16845: an integer overflow vulnerability in Ng-
inx. Attackers can use a compromised variable to execute
out-of-bounds memory access.

Note that the vulnerable versions of Apache, Nginx, and
OpenSSL are not compatible with each other, we simulated
attacks by first porting those CVEs to our protected ver-
sions of Apache/Nginx+OpenSSL (but ONLY protected the
annotated secrets), and then utilizing the vulnerabilities to
search propagated secrets in process memory. Even though
an attack could not directly read the crypto key, it could still
retrieve a plentiful of propagated secrets from the process
memory and leverage those information to recover the key. For
instance, an attack could utilize several of the above mentioned
CVEs to access heap buffers and obtain intermediate values
of Montgomery modular multiplication. By leaking a special
intermediate big number RR (RR = 2/P| mod p, p is one of the
secret large primes used in RSA cryptosystem), the attacker
could calculate p and then factor the RSA big number to
obtain another prime ¢, and finally recover the entire private
key triple (d, p, q) by calculating the modular inverse d

https://cryptompk.code-analysis.org

72 Original

2 Original [Protected

1076
1075
1074
1073
1072
10M

-20.77%

-14.59%

Execution Times

RSA1024 RSA2048 RSA4096 RSA1024 RSA2048 RSA4096

Sign Sign Sign Verify Verify Verify

(a) OpenSSL speed test: RSA sign/verify in 10s

@ Protected

Input size for each encryption (byte)

(b) OpenSSL speed test: AES-GCM

Original [@Protected

256 1024

OpenSSL
Nginx

OpenSSL

Apache enc sign

(c) Network traffic and file protection

Fig. 4: Runtime overhead of crypto speed tests and crypto applications under the protection of CRYPTOMPK

of e mod (p — 1)(¢ — 1).Similarly, attackers could recover
AES and Chacha20 keys using intermediate states, and use
the intermediate blocks of crypt-SHAS512 to recover input
password. In response, CRYPTOMPK extensively identifies
intermediate crypto buffers and relocates them to protected
region, and guarantees the security since memory disclosure
attacks cannot recover useful secrets in non-crypto domain.

F. Performance Tests

1) Runtime Overhead: We tested the runtime overhead
introduced by CRYPTOMPK by evaluating the performance
of protected OpenSSL, libsodium, and libhydrogen libraries.
In detail, we tested the slowdown for RSA and AES us-
ing OpenSSL speed test (a built-in cipher benchmark of
OpenSSL), and the overhead of real-world crypto applications
by 1) testing HTTPS throughput of Nginx/Apache+OpenSSL
with the ApacheBench [44] (both programs were config-
ured to use ECDHE-RSA-AES128-GCM-SHA256 cipher suite,
ApacheBench simulated 20 clients, each sending 1,000 re-
quests); 2) encrypting 100 MB random data with libsodium;
3) signing/encrypting 100 MB random data using libhydrogen.

Figure 4 depicts the overhead for each test case. In Figure 4a
and Figure 4b, we found except the less frequently used
key-size (RSA-1024) or input-size (AES-GCM encryption
with a 16-byte input), the execution slow down is moderate
(from 7.13% to 12.79%). This demonstrates the performance
impact for most computational intensive crypto algorithms is
acceptable. In comparison, Glamdring [31] with a similar code
partitioning model suffered from more than 30% slowdown for
RSA-4096 sign and about 40% slowdown for AES-CBC-256.

For real-world crypto applications (Figure 4c), we observed
a low overhead for a fine-grained isolation: The data en-
cryption with libsodium and libhydrogen suffered 9.53% and
4.52% extra execution time, respectively. And the public key
signing of data using libhydrogen only incurred an overhead
of 1.07%. In particular, the overhead of HTTPS communica-
tion under Apache Benchmark is only 6.25% and 5.19% for
Nginx and Apache, respectively. Compared to CRYPTOMPK,
ERIM [42] and libmpk [5] that also utilize MPK to protect
Nginx+OpenSSL (only protecting the AES session keys) and
Apache+OpenSSL (only protecting the RSA private key) intro-
duced an overhead of 5.06% and 4.82%, respectively. Since
CRYPTOMPK additionally protects the RSA private key as
well as 2,149 memory operations in this case, its MPK-enabled
crypto domain isolation is very efficient.

2) Code Bloating: We tested the code bloating effect
brought by the code transformation of CRYPTOMPK. Par-

12

ticularly, we measured how crypto code (libraries such as
OpenSSL and crypto utilities such as ccrypt) bloat after the
protection. After applying CRYPTOMPK to targets listed in
Figure 5, we found the code bloating for crypto code is
acceptable for cloud servers. For larger targets (OpenSSL and
libsodium), the code bloating ratios are less than 20%. For
targets with relatively small code base (libhydrogen, libcrypt,
and ccrypt), although the code bloating ratios exceed 50%, the
actually increased code size is less than 50 KB.

Since the code bloating is mainly due to the function
replication (Section III-E3), we counted the number of copied
functions (not only the MPK protected ones shown in Table I,
but also their callers) for each tested target. We found although
the bloating ratios of libhydrogen, libcrypt, and ccrypt are more
the 50%, the number of copied functions (59 for libhydrogen,
29 for libcrypt, and 64 for ccrypt) is not large. And for libraries
with larger code base, the copied functions only occupied a
small portion. For instance, CRYPTOMPK only copied 184 of
11,082 (4% of the entire code size) functions in OpenSSL.

Original [@ Protected

(1.19x)
3277

3500

3000

2500

2000 |

1500

Program size (KB)

1000 (1.15x)

(1.88x)
57 107
e T

(1.58x)
74 117

rrzzrTTLY
cerypt

(1.76x)
42 74

500

OpenSSL

libsodium libhydrogen libcrypt

Fig. 5: Code bloating of CRYPTOMPK-protected programs

3) Analysis Costs: We evaluated the costs of static source
code analysis by measuring the consumed time of crypto buffer
labeling and crypto operations identification. The Results are
shown in Table II. Note that for Apache and Nginx, they
executed the same APIs of OpenSSL to enable TLS and for
each host program only one function is involved. Thus we
only consider the analysis time against the code of OpenSSL.

From Table IT we observed that CRYPTOMPK could accom-
plish the analysis of most targets in less than three seconds.
The only exceptions are the analysis against the RSA imple-
mentation of OpenSSL and the password hashing of vsftpd:
it took hundreds of seconds for CRYPTOMPK to finish the
crypto buffer labeling/crypto operations identification tasks.
We checked the analysis procedure and found the reasons.

TABLE II: Analysis performance for each experiment target

TABLE III: Comparison to related systems

Case | SBL(s) | SMOI(s) | Total(s) System Cl C2 C3 C4 Cs5
libhydrogen 031 0.41 0.72 Cali [53] v X OP DI nsjail [54]
cerypt 0.97 1.02 1.99 ConfLLVM [8] X X UP Al MPX [55]
OpenSMTPD-liberypt 1.41 1.02 243 DataShield [6)] v X OP Al MPX [55]
libsodium 2.04 1.81 3.85 Glamdring [31] v X OP DI SGX [56]
vsftpd+liberypt 244.39 5291 297.30 libmpk [5] X X UP DI MPKI[l4]
{Apache, Nginx}+OpenSSL | 638.29 540.94 | 1179.23 SeCage [7] / X OP DI VMFUNC [57]
- - SEIMI [58] X X UP DI SMAP[59]
SBL : time of crypto buffer labeling; Shreds [23] X X UP DI ARM Memory Domains [60]
SMOI : time of sensitive memory operation identification XMP [4] X X UP DI EPTP [6]]
CRYPTOMPK v/ vV AP DI MPK

For case of OpenSSL, the involved code in OpenSSL is sig-
nificantly more complex than that of other targets. A particular
reason is that OpenSSL implemented more than one versions
of modulus and exponent algorithms for different platforms.
CRYPTOMPK, however, is path-insensitive and traversed all
of them and thus spent a longer analysis time. For vsftpd, the
major overhead is due to the analysis of the host program (i.e.,
vsftpd) rather than the crypt API. Among the 596 functions of
vsftpd, 9 of them involve crypto operations, and vsftpd uses
two threads to manage crypto secrets separately. Therefore
CRYPTOMPK spent more analysis time. In comparison, the
similar analysis against crypt with OpenSMTPD only spends
2.43 seconds in total, since the host OpenSMTPD program
adopts a much simpler way to operate crypto secrets.

VI. RELATED WORK

Keeping crypto keys unprotected in memory is dangerous.
Attackers could recover the key through code injection or side
channel attacks [19], [45]. However, not all memory buffers
holding crypto keys are properly sanitized [46]. Actually, K-
Hunt [47] examined popular crypto libraries and utilities, and
found that recoverable keys widely existed. Micheli et al.
demonstrated crypto keys could be effectively recovered from
partial information [48]. CRYPTOMPK advances state-of-the-
art by considering not only the crypto keys but also their
derived secrets. To the best of our knowledge, we are the first
to systematically label all kinds of crypto secrets in programs.

A large number of isolation solutions have been proposed
to isolate confidential data in memory. We summarized nine
most relevant systems and compare them with CRYPTOMPK
in Table III. Among them, ConfLLVM, libmpk, xMP, Seimi,
and Shreds only provide isolation primitives, and require
developers to manually annotate sensitive data and operations.
With only a manual annotation it is difficult to cover all
propagated secrets. To automate sensitive data labeling, Cali,
Datashield, Glamdring, and SeCage utilize different kinds
of data-flow analyses. In particular, Cali leverages program
dependency graph to infer the sensitive memory buffers;
Datashield utilizes inter-procedural and context-sensitive data-
flow analysis to find all the explicitly and implicitly sensitive
variables; Glamdring utilizes static data-flow analysis and static
backward slicing to find control and data dependencies on
the sensitive data annotated by developers; SeCage combines
static and dynamic analysis to decompose monolithic soft-
ware into several compartments and isolates sensitive data.
Unfortunately, none of them considers the characteristic of

13

C2: Context-sensitive Protection
C4: Isolation Mode

C1: Automated Annotation

C3: Propagated Secrets Protection
CS5: Isolation Feature

AI: Address-based Isolation

UP: Under-protected

AP: Accurately-protected

crypto operations to avoid over-tainting issues. In comparison,
CRrYPTOMPK implements a fine-grained labeling that are both
context-sensitive and crypto-aware to guarantee the precise
isolation of crypto secrets.

From the perspective of isolation mode, We categorize sys-
tems in Table III in address-based isolation and domain-based
isolation groups. Corresponding to their isolation mode, these
systems leverage different software and hardware-featured
primitives to implement a more efficient isolation. ConfLLVM
and Datashield adopt the Intel MPX feature to help isolate sen-
sitive data based on an address-based isolation. For SeCage,
SEIMI, and xMP that utilizes different hardware features, they
all need to modify system kernel to implement the protection.
For Cali and Glamdring, they require to split the process into
multiple parts. In comparison, only libmpk and CRYPTOMPK
seldom modifies the execution model and are easy to deploy.

There exist some orthogonal approaches that would enhance
the protection of CRYPTOMPK. We have in fact applied
ERIM [42] to enhance the protection of CRYPTOMPK. Mi-
mosa [49] uses hardware transactional memory (HTM) to
ensure that crypto keys are never loaded to RAM chips. It
however only protects private keys, and does not track and
protect the derived secrets especially those long-term buffers,
which is a key difference from CRYPTOMPK. Wedge [50] and
ProgramCutter [51] partition software into least privilege com-
ponents, and PM [52] could automatically find partitions that
have better balance between security and performance. These
techniques could retrofit the domain model of CRYPTOMPK
(e.g., supporting more than one crypto domain).

DI: Domain-based Isolation
OP: Over-protected

VII. CONCLUSION

Protecting confidential data against memory disclosure at-
tacks is crucial to crypto applications. In this paper we present
CrYPTOMPK, which automates crypto secrets tracking and
implements fine-grained protection for server applications.
With the help of CRYPTOMPK, even a non-expert developer
could easily build and deploy binary executables with crypto
secrets isolated. Our evaluation show that CRYPTOMPK pro-
vides reliable protection against memory disclosure attacks,
and the protection only incurs at most 9.53% runtime overhead
for widely used crypto applications.

ACKNOWLEDGEMENT

The authors would like to thank the reviewers for their
valuable feedback during the revision process. This work was
partially supported by the National Natural Science Founda-
tion of China (N0.62002222), the National Key Research and
Development Program of China (No.2020AAA0107800), and
the start-up funding of the School of Information Technology
and Electronic Engineering, the University of Queensland. We
especially thank Ant Group for the support of this research
within the SJTU-Ant Security Research Centre.

[2]

[3]

[9]
[10]
[11]
[12]
[13]

[14]

[15]

(16]

[17]

(18]

[19]

[20]

REFERENCES

F. A. P. Petitcolas, Kerckhoffs’ Principle.
2011, pp. 675-675.

T. P. Parker and S. Xu, “A Method for Safekeeping Cryptographic
Keys from Memory Disclosure Attacks,” in Proc. 1st International

Boston, MA: Springer US,

Conference on Trusted Systems (INTRUST), 2009.
L. Guan, J. Lin, B. Luo, and J. Jing, “Copker: Computing with Private
Keys without RAM,” in Proc. 21st Annual Network and Distributed

System Security Symposium (NDSS), 2014.

S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and M. Poly-
chronakis, “xMP: Selective Memory Protection for Kernel and User
Space,” in Proc. 41st IEEE Symposium on Security and Privacy (S&P),
2020.

S. Park, S. Lee, W. Xu, H. Moon, and T. Kim, “libmpk: Software
Abstraction for Intel Memory Protection Keys (Intel MPK),” in Proc.
2019 USENIX Annual Technical Conference (USENIX ATC), 2019.
S. A. Carr and M. Payer, “DataShield: Configurable Data Confi-
dentiality and Integrity,” in Proc. 12th ACM on Asia Conference on

Computer and Communications Security (AsiaCCS), 2017.

Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwarting Memory
Disclosure with Efficient Hypervisor-Enforced Intra-Domain Iso-
lation,” in Proc. 22nd ACM SIGSAC Conference on Computer and

Communications Security (CCS), 2015.
A. Brahmakshatriya, P. Kedia, D. P. McKee, D. Garg, A. Lal, A. Rastogi,
H. Nemati, A. Panda, and P. Bhatu, “ConfLLVM: A Compiler for

Enforcing Data Confidentiality in Low-Level Code,” in Proc. 14th

European Conference on Computer Systems (EuroSys), 2019.
OpenSSL. https://www.openssl.org/. Accessed 2021.

Apache. https://httpd.apache.org/. Accessed 2021.

cerypt. http://ccrypt.sourceforge.net/. Accessed 2021.

The Heartbleed Bug. https://heartbleed.com/. Accessed 2021.

K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos, “No
Need to Hide: Protecting Safe Regions on Commodity Hardware,”
in Proc. 12th European Conference on Computer Systems (EuroSys),
2017.

Protection Keys. https://software.intel.com/en-us/articles/intel-sdm. Ac-
cessed 2021.

Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer,
N. Weaver, D. Adrian, V. Paxson, M. Bailey, and J. A. Halderman, “The
Matter of Heartbleed,” in Proc. 14th Internet Measurement Conference

(IMC), 2014.

C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson,
L. Lozano, and G. Pike, “Enforcing Forward-Edge Control-Flow In-
tegrity in GCC & LLVM,” in Proc. 23rd USENIX Security Symposium

(USENIX Security), 2014.
Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to

provide lifetime hypervisor control-flow integrity,” in Proc. 31st IEEE

Symposium on Security and Privacy (S&P), 2010.

M. Zhang and R. Sekar, “Control Flow Integrity for COTS Binaries,”
in Proc. 22nd USENIX Security Symposium (USENIX Security), 2013.
J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul,
J. A. Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten,
“Lest We Remember: Cold Boot Attacks on Encryption Keys,”
Communications of the ACM, vol. 52, no. 5, pp. 91-98, 2009.

M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,

“Meltdown: Reading Kernel Memory from User Space,” in Proc. 27th

USENIX Security Symposium (USENIX Security), 2018.

14

[21]

[22]

[23]

(24]
[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]
[33]
(34]
[35]
[36]
[37]
[38]
(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre Attacks: Exploiting Speculative Execution,” in Proc. 40th
IEEE Symposium on Security and Privacy (S&P), 2019.

PKS: Add Protection Keys Supervisor (PKS) support. https://lwn.
net/Articles/826091/. Accessed 2021.

Y. Chen, S. Reymondjohnson, Z. Sun, and L. Lu, “Shreds: Fine-
Grained Execution Units with Private Memory,” in Proc. 37th IEEE
Symposium on Security and Privacy (S&P), 2016.

Boost C++ Libraries. https://www.boost.org/. Accessed 2021.

D. E. Denning and P. J. Denning, “Certification of Programs for
Secure Information Flow,” Communication of the ACM, vol. 20, no. 7,
p. 504-513, Jul. 1977.

G. Ramalingam, “The Undecidability of Aliasing,” ACM Trans.
Program. Lang. Syst., vol. 16, no. 5, p. 1467-1471, Sep. 1994.

P. M. Gharat, U. P. Khedker, and A. Mycroft, “Flow- and Context-
Sensitive Points-To Analysis Using Generalized Points-To Graphs,”
in Proc. 23rd Static Analysis International Symposium (SAS), 2016.
B. Hardekopf and C. Lin, “Flow-Sensitive Pointer Analysis for Mil-
lions of Lines of Code,” in Proc. 9th Annual IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), 2011.

A. Machiry, C. Spensky, J. Corina, N. Stephens, C. Kruegel, and
G. Vigna, “DR. CHECKER: A Soundy Analysis for Linux Ker-
nel Drivers,” in Proc. 26th USENIX Security Symposium (USENIX
Security), 2017.

G. M. Essertel, G. Wei, and T. Rompf, “Precise Reasoning with
Structured Time, Structured Heaps, and Collective Operations,”
Proc. ACM Program. Lang., vol. 3, no. OOPSLA, Oct. 2019. [Online].
Available: https://doi.org/10.1145/3360583

J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P. Aublin, F. Kelbert,
T. Reiher, D. Goltzsche, D. M. Eyers, R. Kapitza, C. Fetzer, and P. R.
Pietzuch, “Glamdring: Automatic Application Partitioning for Intel
SGX,” in Proc. 26th USENIX Security Symposium (USENIX Security),
2017.

jemalloc memory allocator. http://jemalloc.net/. Accessed 2021.
GNU libe. https://www.gnu.org/software/libc/. Accessed 2021.
libsodium. https://doc.libsodium.org/. Accessed 2021.

libhydrogen. https://github.com/jedisct1/libhydrogen. Accessed 2021.
Nginx. https://nginx.org/en/. Accessed 2021.

vsftpd. https://security.appspot.com/vsftpd.html/. Accessed 2021.
OpenSMTPD. https://https://www.opensmtpd.org/. Accessed 2021.

I. Agadakos, D. Jin, D. Williams-King, V. P. Kemerlis, and G. Portoka-
lidis, “Nibbler: Debloating Binary Shared Libraries,” in Proc. 35th
Annual Computer Security Applications Conference (ACSAC), 2019.
T. Palit, J. F. Moon, F. Monrose, and M. Polychronakis, “DynPTA:
Combining Static and Dynamic Analysis for Practical Selective Data
Protection,” in Proc. 42nd IEEE Symposium on Security and Privacy
(S&P), 2021.

L. Szekeres, M. Payer, T. Wei, and D. Song, “SoK: Eternal War in
Memory,” in Proc. 34th IEEE Symposium on Security and Privacy
(S&P), 2013.

A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg, “ERIM: Secure, Efficient In-process Iso-
lation with Protection Keys (MPK),” in Proc. 28th USENIX Security
Symposium (USENIX Security), 2019.

P. L. Montgomery, “Modular Multiplication without Trial Division,”
Mathematics of Computation, vol. 44, no. 170, pp. 519-521, 1985.
ApacheBenchmark. https://httpd.apache.org/docs/2.4/programs/ab.
html. Accessed 2021.

K. Harrison and S. Xu, “Protecting Cryptographic Keys from Mem-
ory Disclosure Attacks,” in Proc. 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2007.

Z. Yang, B. Johannesmeyer, A. T. Olesen, S. Lerner, and K. Levchenko,
“Dead Store Elimination (Still) Considered Harmful,” in Proc. 26th
USENIX Security Symposium (Usenix Security), 2017.

J. Li, Z. Lin, J. Caballero, Y. Zhang, and D. Gu, “K-Hunt: Pinpointing
Insecure Cryptographic Keys in Execution Traces,” in Proc. 25th
ACM Conference on Computer and Communications Security (CCS),
2018.

G. D. Micheli and N. Heninger, “Recovering cryptographic keys from
partial information, by example,” in Cryptology ePrint Archive: Report
2020/1506 (ePrint), 2020.

https://www.openssl.org/
https://httpd.apache.org/
http://ccrypt.sourceforge.net/
https://heartbleed.com/
https://software.intel.com/en-us/articles/intel-sdm
https://lwn.net/Articles/826091/
https://lwn.net/Articles/826091/
https://www.boost.org/
https://doi.org/10.1145/3360583
http://jemalloc.net/
https://www.gnu.org/software/libc/
https://doc.libsodium.org/
https://github.com/jedisct1/libhydrogen
https://nginx.org/en/
https://security.appspot.com/vsftpd.html/
https://https://www.opensmtpd.org/
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html

[49] L. Guan, J. Lin, B. Luo, J. Jing, and J. Wang, “Protecting private keys
against memory disclosure attacks using hardware transactional

memory,” in Proc. 36th IEEE Symposium on Security and Privacy

(S&P), 2015.

A. Bittau, P. Marchenko, M. Handley, and B. Karp, “Wedge:
Splitting Applications into Reduced-Privilege Compartments,” in
Proc. 5th USENIX Symposium on Networked Systems Design and

[50]

Implementation (NSDI), 2008.

Y. Wu, J. Sun, Y. Liu, and J. S. Dong, “Automatically Partition
Software into Least Privilege Components using Dynamic Data De-
pendency Analysis,” in Proc. 28th IEEE/ACM International Conference

[51]

on Automated Software Engineering (ASE), 2013.

S. Liu, D. Zeng, Y. Huang, F. Capobianco, S. McCamant, T. Jaeger, and
G. Tan, “Program-mandering: Quantitative privilege separation,” in
Proc. 26th ACM Conference on Computer and Communications Security

[52]

(CCS), 2019.
M. Bauer and C. Rossow, “Cali: Compiler-Assisted Library Iso-
lation,” in Proc. 16th ACM on Asia Conference on Computer and

[53]

Communications Security (AsiaCCS), 2021.

nsjail. https://nsjail.dev/. Accessed 2021.

Introduction to Intel Memory Protection Extensions.
https://software.intel.com/content/www/cn/zh/develop/articles/
introduction-to-intel-memory-protection-extensions.html.
2021.

SGX. Intel(R) 64 and IA-32 Architectures Software Developer’s Manual
Volume 3C: System Programming Guide, Part 13. Accessed 2021.
VMFUNC. Intel(R) 64 and IA-32 Architectures Software Developer’s
Manual Volume 1: Basic Architecture, Part 5. Accessed 2021.

Z. Wang, C. Wu, M. Xie, Y. Zhang, K. Lu, X. Zhang, Y. Lai, Y. Kang,
and M. Yang, “SEIMI: Efficient and Secure SMAP-Enabled Intra-
process Memory Isolation,” in Proc. 41st IEEE Symposium on Security

[54]
[55]

Accessed
[56]
[57]

(58]

and Privacy (S&P), 2020.
SMAP. Intel(R) 64 and IA-32 Architectures Software Developer’s

Manual Volume 3A: System Programming Guide, Part 4. Accessed
2021.

ARM Memory domains. https://developer.arm.com/documentation/
ddi0211/k/memory-management-unit/memory-access-control/domains.
Accessed 2021.

EPTP. Intel(R) 64 and IA-32 Architectures Software Developer’s Man-
ual Volume 3C: System Programming Guide, Part 2. Accessed 2021.
Clang: a C language family frontend for LLVM. https://clang.llvm.
org/. Accessed 2021.

The LLVM gold plugin. https:/llvm.org/docs/GoldPlugin.html. Ac-
cessed 2021.

Control Flow Integrity. https://releases.llvm.org/10.0.0/tools/clang/
docs/ControlFlowIntegrity.html. Accessed 2021.

[59]
[60]

[61]
[62]
[63]

[64]

APPENDIX
A. Details of Test Cases

We used two sets of widely used open source projects
to evaluate CRYPTOMPK. The first set contains four crypto
libraries and the second set contains four widely used Linux
web server programs. Details of the tested libraries and pro-
grams are shown in Table IV. The source code of them could
be found in https://cryptompk.code-analysis.org. To evaluate
whether CRYPTOMPK can be applied to protect sensitive data
in real world applications, we consider four typical application
scenarios and tested CRYPTOMPK with the corresponding
cases.

1) File Encryption. We employed ccrypt to conduct file
encryption/decryption. ccrypt reads the passphrase from a
local file and derives its AES encryption key. Then it uses
the derived key to fulfil file encryption/decryption.

2) Message Protection. We implemented an authentication
encryption program using ciphers of libsodium and lib-
hydrogen (i.e., xchacha20-polyl305 stream cipher and

15

Curve25519 elliptic curve public key cipher), which fulfils
message encrypting and signing.

SSL/TLS Transmission. We deployed Nginx and Apache
with OpenSSL to provide HTTPS service for browsers.
We chose the widely used ECDHE-RSA-AES128-GCM-
SHA256 cipher suite for the TLS connection. Note that
the analysis for other crypto suites are similar and thus we
only tested one of them.

Password Authentication. We deployed vsftpd and
OpenSMTPD with password authentication to provide FTP
and SMTP services, respectively. In both applications,
the input passwords are verified by the crypt password
hashing API provided by libcrypt of glibc.

3)

4)

Library | Version | Line of Code
liberypt 2.27 3,016
libhydrogen 0.2.0 2,597
libsodium 1.0.18 32,279
OpenSSL 1.0.2u 163,734
Application | Version | Line of Code
Apache 2.4.43 235,956
ccrypt 1.11 21,558
OpenSMTPD 6.0.3pl 39,713
Nginx 1.17.10 137,092
vsftpd 3.03 15,052

TABLE IV: The evaluated programs and crypto libraries.

B. Compiling and Analyzing Experimental Targets

In the following, we briefly present the steps of how
to compile and analyze our experimental targets. More de-
tailed instructions could also be found in https://cryptompk.
code-analysis.org.

To analyze the source code of the tested projects, CRYP-
TOMPK needs to first compile source code into LLVM IR
bitcode for the following analyses. To implement a cross-
module analysis, CRYPTOMPK merges LLVM IR bitcode
modules generated from each source code file into a single
bitcode file. It first utilizes the LLVM compiler infrastructure
to handle source code in the pre-processing phase (by using the
-emit-11vm option of Clang [62] to generate a set of LLVM
IR bitcode modules). Next, CRYPTOMPK merges them into
a single bitcode file by leveraging LLVM gold plugin [63].

CRrRYPTOMPK by default adopts a conservative optimization
level (i.e., -00 for LLVM) to generate bitcode. Using such a
compilation option, all data references in bitcode are in the
form of memory reference. We observe that a large number of
memory references often lead to unacceptable memory over-
head for CRYPTOMPK in sensitive buffer labeling phase. As a
result, CRYPTOMPK further applies the mem2reg optimization
pass to transform memory references of function primitive
type data to register references. CRYPTOMPK also applies
jump threading, simplifycfg and dce passes to optimize
control flow, which will improve analysis performance.

When applying CRYPTOMPK to complex code bases such
as OpenSSL and vsftpd, some execution environments with
limited RAM may suffer from out-of-memory issue. We

https://nsjail.dev/
https://software.intel.com/content/www/cn/zh/develop/articles/introduction-to-intel-memory-protection-extensions.html
https://software.intel.com/content/www/cn/zh/develop/articles/introduction-to-intel-memory-protection-extensions.html
https://developer.arm.com/documentation/ddi0211/k/memory-management-unit/memory-access-control/domains
https://developer.arm.com/documentation/ddi0211/k/memory-management-unit/memory-access-control/domains
https://clang.llvm.org/
https://clang.llvm.org/
https://llvm.org/docs/GoldPlugin.html
https://releases.llvm.org/10.0.0/tools/clang/docs/ControlFlowIntegrity.html
https://releases.llvm.org/10.0.0/tools/clang/docs/ControlFlowIntegrity.html
https://cryptompk.code-analysis.org
https://cryptompk.code-analysis.org
https://cryptompk.code-analysis.org

TABLE V: Performance overhead comparison between CRYPTOMPK fully-protected programs and their memory re-allocation

only counterparts

Test Suite | Baseline | Fully Protected | Memory Re-allocation Only
RSA1024-Sign (sign/s) 2,264.19 1,933.86 (14.59%) 2,066.51 (8.73%)
RSA2048-Sign (sign/s) 373.92 337.52 (9.73%) 344.24 (7.94%)
RSA4096-Sign (sign/s) 55.29 51.06 (7.66%) 51.44 (6.96%)

RSA1024-Verify (verify/s) | 50,548.27 43,629.8 (13.69%) 44,251.45 (12.46%)
RSA2048-Verify (verify/s) 14,399.73 12,557.67 (12.79%) 12,612.88 (12.41%)
RSA4096-Verify (verify/s) 3,715.38 3,295.75 (11.29%) 3,298.49 (11.22%)
AES-16 (KB/s) 113,876.33 | 90,228.85 (20.77%) 103,922.18 (8.74%)
AES-64 (KB/s) 119,801.85 107,516.41 (10.25%) 110,329.25 (7.91%)
AES-256 (KB/s) 122,768.49 | 113,073.89 (7.90%) 113,779.24 (7.32%)
AES-1024 (KB/s) 123,387.07 114,451.00 (7.24%) 114,776.03 (6.98%)
AES-8192 (KB/s) 123,664.66 114,844.60 (7.13%) 115,042.03 (6.97%)
Nginx (ms/req) 89.81 95.421 (6.25%) 94.73 (5.48%)
Apache (ms/req) 109.14 114.81 (5.19%) 114.03 (4.48%)
libsodium-enc (sec) 1.102 1.207 (9.53%) 1.204 (9.26%)
libhydrogen-enc (sec) 3.122 3.263 (4.52%) 3.189 (2.15%)
libhydrogen-sign (sec 1.686 1.704 (1.07%) 1.696 (0.59%)

suggest that analysts could choose to ignore a certain group
of functions to finish the analysis: (i) ASN1-family functions
in OpenSSL are related to parsing ASN1 certificate files.
Such parsing logic is very complicated, and can leads to
path explosion in analysis if not handled. Since they do not
propagate any taint tags based on our knowledge, we pruned
them off in the analysis; (ii) the built-in dynamic memory man-
agement functions in OpenSSL. OpenSSL uses BN_PO0OL_get
to implement stack-like allocation of BIGNUM. However, the
static analysis of CRYPTOMPK cannot deal with memory pool
well for CRYPTOMPK is adopting weak-updating strategy
as mentioned in Section IV-B. Hence CRYPTOMPK handles
BN_POOL_get specifically. In sensitive buffer labeling phase,
CRrRYPTOMPK only allocates object at the first time it traverse
into BN_POOL_get. (iii) Error handling function is frequently
used in vsftpd, which introduce high analysis costs for CRYP-
TOMPK. Empirically, those functions are not vulnerable, we
manually disable the analysis against them (e.g. bug die and
die?2) to improve the analysis performance.

After CRYPTOMPK finishes all LLVM IR level code trans-
formation for crypto buffer protection, it performs a final pass
to optimize the generated IR instructions. Then, the optimized
IR code are compiled into binary code, and linked it to a pre-
built shared library that provides secure memory management
(i.e., implementing m_malloc and m_free based on Jemalloc)
to generate the executables, and we could utilize the binary
analysis module of ERIM to check the generated binary code.

C. Evaluation for Performance Overhead of Memory Re-
allocation and CFI

Since the overhead of CRYPTOMPK is not only caused by
MPK privilege switching but also by our implemented memory
re-allocation, we further measured the runtime performance
of tested targets with memory re-allocation only (i.e., dis-
abling MPK privilege switching), and compared it with the
performance of fully-protected targets. The result is shown in
Table V. We found that the introduced memory re-allocation
actually contributed a major part of the entire overhead in most
test cases, and this indicates that a further optimized memory

16

re-allocation mechanism could be fulfilled to implement a
more efficient protection. We leave this as a future work.
The overhead of CRYPTOMPK is only related to memory
isolation and does not involve integrity protection. To ap-
proximately evaluate the overhead of an integrated solution
combining CRYPTOMPK and CFI, we measured the combined
performance overhead with both CRYPTOMPK and the LLVM-
CFI [64]. Note that the used LLVM-CFI (version 10.0.1) still
introduced compatibility issues for OpenSSL since the crypto
library contains many cases of mismatching between a func-
tion pointer and its pointed function. We therefore manually
disable the CFI for those function pointers in our experiments.
As shown in Table VI, after applying CFI protection, the
runtime overhead additionally increased around 2% for our
tested targets. This implies the feasibility of combining current
CFI mechanisms and CRYPTOMPK. Nonetheless, we point
out that ensuring integrity is still a very challenging problem
and is under active research. As a result, CRYPTOMPK still
focuses on the confidentiality aspect only in this paper.

TABLE VI: Results of MPK+CFI Protection

Program | MPK overhead | MPK+CFI overhead

libsodium 11.37% 13.74%
libhydrogen-enc 4.52% 4.52%
libhydrogen-ign 1.07% 1.07%
Apache+OpenSSL 5.19% 7.03%
Nginx+OpenSSL 6.62% 7.69%

	Introduction
	Background
	Problems and Requirements
	Challenges
	Solutions

	CryptoMPK
	Threat Model and Concepts
	Overview of CryptoMPK
	Automated Crypto Buffer Labeling
	Crypto Operation Identification
	Code Transformation
	Memory Relocation
	Privilege Switch Instrumenting
	Code Replication

	Implementation
	Static Program Analysis
	Labeling Crypto Buffers
	Identifying Crypto Operations
	Privilege Switch Instrumenting
	Invocation with Function Pointer
	Crypto Buffer Management
	Runtime Checks

	Evaluation
	Experiment Setup
	Annotated Tags and Costs
	Labeling Accuracy
	Security Analysis
	Protection Effectiveness
	Performance Tests
	Runtime Overhead
	Code Bloating
	Analysis Costs

	Related Work
	Conclusion
	References
	Appendix
	Details of Test Cases
	Compiling and Analyzing Experimental Targets
	Evaluation for Performance Overhead of Memory Re-allocation and CFI

