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Crypto Confidential Data Leakage

▪ Initial crypto key

▪ Intermediate crypto buffer
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Nginx-OpenSSL

Confidential 
Data

HeartBleed
Attacker

Memory Disclosure 

Attacks



Requirement for an Accurate Protection

Find all crypto 
secrets

Exclude non-secrets



Threat Model

Attackers aim to disclosure 

cryptographic data in program

（e.g., AES/RSA keys）
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Accurately label crypto memory 

buffers and related operations

Appropriately isolate crypto data from 

unauthorized memory accesses

Implement the isolation without 

changing the execution model 
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Workflow of CryptoMPK

1. Preprocessing code and manually annotating initial crypto secrets

2. Automatically labeling crypto buffers

3. Automatically identifying crypto operations

4. Automatically transforming source code into MPK-protected, secure binaries



Crypto Buffer Labeling
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Context-sensitive Analysis
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Crypto Operation Identification
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Code Transformation
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Code Transformation
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Experiment Setup



Labeling Accuracy



Protection Effectiveness

Protection against Memory Disclosures: 

▪ CVE-2011-4576: 

▪ uninitialized variable vulnerability

▪ CVE-2014-0160: 

▪ HeartBleed

▪ CVE-2016-2176: 

▪ out-of-bounds reads

▪ CVE-2017-9798: 

▪ use-after-free vulnerability

▪ CVE-2018-16845: 

▪ out-of-bounds reads

RR ≡ 2n (𝑚𝑜𝑑 𝑝)

Additionally Protected Buffers

▪ SSL/TLS：

▪ intermediate BIGNUM structs

▪ AES:  

▪ round key buffers (recovering main key)

▪ Chacha20-Poly1305: 

▪ intermediate array (guess nonce offset)

▪ Crypt-SHA512:

▪ Intermediate buffer (recovering password)



Performance
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Benchmark slow down: from 7.13% to 13.69% 
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Benchmark slow down: from 7.13% to 12.79% 



Performance

Runtime overhead: less than 10%OpenSSL Speed 
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Performance

OpenSSL Speed 
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Large Targets : bloating ratios are less than 20%

Small code base : increased size is less than 50KB



Performance
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Conclusion

▪ Accurate Protection

▪ Automated and comprehensive crypto secrets tracking (crypto-aware, context sensitive)

▪ Efficient Isolation

▪ Intel MPK enhanced fine-grained in-process isolation

▪ Easy-to-use

▪ build and deploy protected binary executables with widely used toolchain (LLVM) for non-expert 

developers

▪ Low overhead

▪ a maximum 9.53% runtime overhead for widely used crypto applications

More details at: https://cryptompk.code-analysis.org/

https://cryptompk.code-analysis.org/
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