
Annotating, Tracking, and Protecting
Cryptographic Secrets with CryptoMPK

Xuancheng Jin, Xuangan Xiao, Songlin Jia, Wang Gao, Dawu Gu,

Hang Zhang, Siqi Ma, Zhiyun Qian, and Juanru Li

IEEE S&P 2022

Crypto Confidential Data Leakage

▪ Initial crypto key

▪ Intermediate crypto buffer

Memory Disclosure Attacks

Nginx-OpenSSL

Confidential
Data

HeartBleed
Attacker

Memory Disclosure

Attacks

Requirement for an Accurate Protection

Find all crypto
secrets

Exclude non-secrets

Threat Model

Attackers aim to disclosure

cryptographic data in program

（e.g., AES/RSA keys）

Confidential
Data

Vulnerabilities

Disclosure

Control-flow HijackingMemory Disclosure

Supplementary Defenses

CFI、DEP、Stack Cookies

Accurately label crypto memory

buffers and related operations

Appropriately isolate crypto data from

unauthorized memory accesses

Implement the isolation without

changing the execution model

Analysis-driven Sensitive Data
Labeling

Hardware-supported Domain
Isolation

Compiler-assisted Code
Transformation

Solution

Challenges CryptoMPK

Workflow of CryptoMPK

1. Preprocessing code and manually annotating initial crypto secrets

2. Automatically labeling crypto buffers

3. Automatically identifying crypto operations

4. Automatically transforming source code into MPK-protected, secure binaries

Crypto Buffer Labeling

5

×

mxor tag

crypto tag

Manual Annotation

Automated Labeling

Context-sensitive Analysis

Context-aware

Sensitive
Variable

Context

Semantics

Crypto Operation Identification

Context-aware

Crypto Operation
Identification

Memory
Access

Memory
Management

Code Transformation

Memory
Relocation

Privilege Switch
Instrumentation

Code
Replication

crypto domain

non-crypto domain

Code Transformation

Memory
Relocation

Privilege Switch
Instrumentation

Code
Replication

Intel MPK

Code Transformation

Memory
Relocation

Privilege Switch
Instrumentation

Code
Replication

Code Transformation

Memory
Relocation

Privilege Switch
Instrumentation

Code
Replication

Experiment Setup

Labeling Accuracy

Protection Effectiveness

Protection against Memory Disclosures:

▪ CVE-2011-4576:

▪ uninitialized variable vulnerability

▪ CVE-2014-0160:

▪ HeartBleed

▪ CVE-2016-2176:

▪ out-of-bounds reads

▪ CVE-2017-9798:

▪ use-after-free vulnerability

▪ CVE-2018-16845:

▪ out-of-bounds reads

RR ≡ 2n (𝑚𝑜𝑑 𝑝)

Additionally Protected Buffers

▪ SSL/TLS：

▪ intermediate BIGNUM structs

▪ AES:

▪ round key buffers (recovering main key)

▪ Chacha20-Poly1305:

▪ intermediate array (guess nonce offset)

▪ Crypt-SHA512:

▪ Intermediate buffer (recovering password)

Performance

OpenSSL Speed
(RSA)

OpenSSL Speed
(AES-128-GCM)

Server

Code Bloating

Analysis Costs

Benchmark slow down: from 7.13% to 13.69%

Performance

OpenSSL Speed
(RSA)

OpenSSL Speed
(AES-128-GCM)

Server

Code Bloating

Analysis Costs

Benchmark slow down: from 7.13% to 12.79%

Performance

Runtime overhead: less than 10%OpenSSL Speed
(RSA)

OpenSSL Speed
(AES-128-GCM)

Server

Code Bloating

Analysis Costs

Performance

OpenSSL Speed
(RSA)

OpenSSL Speed
(AES-128-GCM)

Server

Code Bloating

Analysis Costs

Large Targets : bloating ratios are less than 20%

Small code base : increased size is less than 50KB

Performance

analysis time: less than 20 minutesOpenSSL Speed
(RSA)

OpenSSL Speed
(AES-128-GCM)

Server

Code Bloating

Analysis Costs
13

Conclusion

▪ Accurate Protection

▪ Automated and comprehensive crypto secrets tracking (crypto-aware, context sensitive)

▪ Efficient Isolation

▪ Intel MPK enhanced fine-grained in-process isolation

▪ Easy-to-use

▪ build and deploy protected binary executables with widely used toolchain (LLVM) for non-expert

developers

▪ Low overhead

▪ a maximum 9.53% runtime overhead for widely used crypto applications

More details at: https://cryptompk.code-analysis.org/

https://cryptompk.code-analysis.org/

Q & A

